零、前言 在前面我們了解到 Deep Learning 大致上是如何運作的,那也看到我們最後測出來的準確度卻都不到 80%,嚴格說起來還不能真正地解決我們遇到的...
在訓練神經網絡時,最常用的算法是反向傳播(back propagation)。在這個算法中,根據損失函數對給定參數的梯度,調整參數(模型權重)。 為了計算這些梯...
分解Cat vs Ravbbit模型中的各個層次。為了方便講解,我們將取一個大小為224x224的且批次為 10 (10張224*224大小的圖片)的隨機 te...
torch.nn 命名空間提供了構建自己的神經網路所需的所有基本組件。在PyTorch中,每個模組都是 nn.Module 的子類別。神經網路本身也是一個模組,...
簡介 透過文本捕捉語言結構,進而建立一個統計機率模型,廣義而言就可以被稱作一種語言模型。本文主要介紹透過神經網路訓練出來的語言模型,以及常見 Transform...
今天將以深度學習常見的手寫阿拉伯數字辨識的資料集訓練,keras提供了兩種類型的模型,第一個是Sequential model,適用於簡單的結構,一層一層的連接...
今日大綱 神經網路簡介 梯度下降法 (Gradient descent) 激活函數 (Activation function) 程式碼 神經網路簡介 下圖為...
今天沒有引言,但是有梗圖 前天的文章介紹了基本的循環神經網路RNN,但RNN的致命缺點是容易導致梯度下降或是梯度爆炸。為了要解決這個問題,必須在以下兩點...
記憶是個很奇妙的東西。他並不如我想像中那樣運作的。我們太受限於時間了,尤其是時間的順序...《異星入境》Louise Banks 昨天我們剛介紹完循環神經網...
前導介紹說到深度學習,首先需要了解什麼是類神經網路和它的操作方法。類神經網路,顧名思義就是仿造人類的神經而去打造而成的演算法,讓其能夠透過像是神經傳導一樣接收...
前言 不知不覺,鐵人賽的賽程已經來進行了一半,每天發文使得生活過得非常充實。也感謝這裡的許多高手發表優質文章,讓第一次參賽又是跨IT領域的自己感到無比熱血。大家...
更新紀錄: 2020/05/07-更新排版、代碼、參考文獻 前言: ESN是RNN的一個變種,優點在於訓練速度比一般RNN快幾百倍(用回歸求解矩陣)。主要參...
為什麼大家到現在都這麼迷神經網路模型? 我想主因不是因為他是模擬生物而來,他有一些更扎實的數學特性。 我們前面講過各種線性模型,然後將他過渡到神經網路。 今天要...
我們把線性模型們都大統一了。 接下來就要進入到令人興奮的神經網路模型了! 首先,我們先來介紹著名的感知器...嗯...前面不是介紹過了? 喔喔!對喔!他長這個...
前言 在 Neural Network 的求解過程中,最重要而難懂的觀念應該是『梯度下降』(Gradient Descent)吧 ,我雖然在Day 03:Neu...
前言 當我們人生決定轉向,不能免俗的,一定要了解市場行情,免得誤入歧途,人財兩失。因此針對 Machine Learning 相關的工作進行了一番調查,除了工作...
資料處理流程(Process) 機器學習(Machine Learning)處理資料的生命週期(Life cycle) 與 Data Mining 是一致的,這...
前言 Facebook AI 大師 Yann LeCun 在接受Quora專訪時說『GAN及其變形是近十年最有趣的想法(This, and the variat...
前言 上一篇我們舉了一個很簡單的範例,判斷聲音是bed、cat 或是 happy,實務上它可以應用在一些場域,例如,PowerPoint簡報時,我們可以用聲音下...
前言 Neural Networks 在影像、文字、語音等自然使用者介面(NUI)處理有突破性的發展,之前我們已經見證過影像及文字的辨識威力了,從這一篇開始,我...
前言 上一篇我們以航空公司的每月乘客人數為例,使用 LSTM 模型預測下個月的乘客數,其中牽涉到『時間序列分析』(Time Series Analysis)一些...
前言 之前,我們都在影像、語言等基礎應用上打轉,這次我們要來探討一個可應用在企業運作上的實例,銷售預測主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計...
前言 現在人身處網路時代,每天都會收到一堆LINE、Email、Facebook、Instantgram、...等等五花八門的訊息或網頁,花整天看都消化不完,只...
前言 筆者在作上一篇時卡住很久,因為,碰到很多術語,搞得頭暈腦脹,因此本篇花點時間將心得整理起來,與同好共享。內容大致如下: 成效衡量指標(Metrics):...
前言 我們在『Day 09:CNN 經典模型應用』討論到CNN的預先訓練好的模型,並在後續的篇幅,直接套用這些模型在『照片主體的相似性比對』、『畫風轉換』及『物...
目標 今天我們要利用一個 seq2seq 模型,來作英中翻譯,它不是以傳統字典的查詢方式,而是利用 LSTM 演算法,讓機器自我學習,進而達到翻譯的功能。這個程...
前言 原來還想多介紹幾個應用,但是,一直擔心忘了另一個RNN的變形 -- GRU,所以,還是先把它處理掉,才好 focus 在應用上。另一方面,LSTM 執行速...
前言 現在網友都勇於發聲,網路聲量高漲,往往會引領群眾的意向,引發巨大能量,影響國家命運,例如太陽花運動、埃及茉莉花革命,因此,輿情分析已經變成顯學,如何收集網...
RNN 的缺點 上篇介紹的RNN,它能夠額外考慮前面字句,來預測當前的字句,聽起來似乎已符合語言的特性了。但是,距離當前單字越遠的字句影響力會遞減,因為,下面的...
前言 上一篇我們對『自然語言處理』(Natural Language Processing, NLP)有一個初步的認識,現在,我們再進一步認識,如何以 Neur...